Digital Background Correction for Channel Mismatch and Third-Order Nonlinearity of TI-ADCs with VCOs

Takao Kihara Osaka Institute of Technology, Japan

November 22-26, 2021

Outline

- Background and Objectives
 - Time-interleaved A/D converters (TI-ADCs) with voltage-controlled oscillators (VCOs)
 - Digital correction methods for TI-ADCs
- Correction Method
 - Expressions of mismatch aliasing and HD3 and IM3 products
 - Mismatch/HD3 and IM3 removals and estimations
- Simulations
 - Input and output FFT spectra
 - Layout and power consumption
- Comparison and summary

- HD3: Third-order harmonic distortion,
- IM3: Third-order Intermodulation
 - FFT: Fast Fourier transform

TI-ADC with VCOs

- Consists of multiple, *N*, VCO-based ADCs
- Reduces quantization noise around +/-kfs/N (k=1, 2, ...), i.e., bandpass
- Achieves 5 GS/s with 7.2 bit and 22.7 mW (JSSC '20 [3])
- Realizes low-power direct-RF sampling receivers
- Suffers from mismatch aliasing signals and HD3/IM3 products caused by nonlinearity, degrading SFDR
- Needs background correction circuit

Digital Correction Methods for TI-ADCs

- Conventional methods have not simultaneously corrected the channel mismatch and nonlinearity in background.
- TCAS-I '15 [4] and '19 [5] (my work):
 - Uses adaptive filters with CCF
 - Reduces mismatch aliasing signals
 - Not decreases HD3 and IM3
 - JSSC '20 [3]:
 - Employs LUTs and tunable clock delays
 - Calibrates the mismatch and nonlinearity
 - Require CW signals and manual steps

- LUT: Lookup table,
- CW: Continuous wave

Objectives

- LNA: Low-noise amplifier
- **FP:** Floating point

- Digital background correction for 4-ch. TI-ADC with VCOs:
 - Decreases mismatch aliasing signals, HD3, and IM3 products by using adaptive filters with CCF to improve SFDR from 54.8 dB to 66.7 dB
 - Utilizes bandpass (complex) signals, downconverted to DC and decimated by *D* in direct-RF receivers
 - Implemented by 24-bit FP arithmetic, operates at fs/D (=57.5 MS/s, where fs=3,680 MHz and D=64) and 4.3 mW for 65-nm CMOS process

Expressions of HD3 and IM3

Expression of Mismatch Aliasing

Correction Method

- Consists of four blocks: mismatch aliasing removal, mismatch estimation, HD3 and IM3 removal, and 3rd-order nonlinearity estimation
- Adaptive filters (removals) decrease mismatch aliasing signals/HD3 and IM3 products with $\widehat{a_M}(m) / \widehat{a_3}(m)$, estimated by CCFs and LMS algorithms
- Implemented by 24-bit floating point arithmetic
- □ CCF: Cross-correlation function, LMS: Least mean square

Mismatch Removal and Estimation

• Removes mismatch aliasing:

$$y_{MC}(m) = y_{BB}(m) - \hat{a}_M(m-1)y_{BB}^*(m-1)$$

- Detects mismatch aliasing with CCF: $\gamma_{y_{MC}y_{MC}^*}(\tau) = E[y_{MC}(m)[y_{MC}^*(m-\tau)]^*]$ $= E[y_{MC}(m)y_{MC}(m-\tau)],$
- $\Box \quad E[-]: Expected value$

• LMS algorithm converges:

 $\hat{a}_{M}(m+1) = \hat{a}_{M}(m) + \overbrace{\mu_{M}}^{r} \cdot \gamma_{y_{MC}y_{MC}^{*}}(\tau),$ Adaptive step size

HD3 and IM3 Removals and HD3 Estimation

• Removes HD3 and IM3 products:

 $y_{NC}(m) = y_{MC}(m) - \hat{a}_3(m-1)$ $\cdot \left\{ [y_{MC}^*(m)]^3 + 3y_{MC}^2(m)y_{MC}^*(m) \right\}$

• Detects HD3 with CCF:

 $\gamma_{y_{NC}(y_{NC}^{*})^{3}}(\tau) = E[y_{NC}(m)y_{NC}^{3}(m-\tau)].$

• LMS algorithm converges: $\hat{a}_3(m+1) = \hat{a}_3(m) + \mu_N \cdot \gamma_{y_{NC}(y^*_{NC})^3}(\tau),$ Adaptive step size

 ω_s

2

0

 ω_s

Verification (Simulink Testbench)

- Proposed correction, applied to a direct-RF sampling receiver with *fs*=4x920 MHz, *D*=64, verified in:
 - System level: MATLAB/Simulink (Mathworks Inc.)

- Circuit level: Analog/mixed-signal (AMS) simulator (Cadence Inc.)
 - Analog blocks (LNA, T&H circuits, VCOs, samplers, and clock generation circuits), designed with 65-nm CMOS PDK
 - Digital blocks including correction blocks, coded with Verilog-HDL

Simulated Conditions

Simulator	Para	ameter	Variable	Unit	Value
	Numbe	N_D	(-)	2^{21}	
	Sampling frequency		f_s	MHz	4×920
	Frequencies of input		f_{in1}	MHz	924.04
	two-tone signal		f_{in2}	MHz	925.84
Common	Power of input		P_{in1} ,	dBm	-40.0
	one-tone signal		P_{in2}		
	Adaptive	Mismatch	μ_M	-	2^{-32}
	step size	Nonlinearity	μ_N	-	2^{-72}
	Gain	of LNA	-	dB	20
	IIP; LNA			_dBm	0.50 _
	1	Bias	$a_{VCO,0}$	THz/V	0.088
MATLAB/		1st-order	$a_{VCO,1}$	THz/V	-0.669
Simulink	VCO gain	2nd-order	$a_{VCO,2}$	THz/V	1.995
	coefficient	3rd-order	$a_{VCO,3}$	THz/V	-2.947
		4th-order	$a_{VCO,4}$	THz/V	-2.194
		5th-order	$a_{VCO,5}$	THz/V	-0.662

- Two-tone signal, around fs/4, input to receiver
- Nonlinearity coefficients of VCO, *avco,i* (*i*=1,2,3), for Simulink, obtained from circuits simulations

Layout and Power Comsuption of Digital Blocks

- Synthesized with Synopsys Design Compiler and 65-nm CMOS PDK
- Placed and routed with IC Compiler II for 920-MS/s (*fs/N*) rate and WST
- Chip area: 0.20 mm²
- Dynamic and static power consumption for correction circuit: 4.3 mW (57.5-MS/s, *fs/D*) rate under TYP, set by a toggle rate of 60% on Synopsys Power Compiler
 - WST cond. :SS, 0.9-V supply, and 125 deg.C
 TYP cond.: TT, 1.0-V supply, and 25 deg.C)

Simulated Input/Output FFT Spectra (Simulink)

- Desired signal (5.84 MHz) did not change
- Mismatch aliasing (-5.84 MHz) decreased from -80.8 dBFS to -102 dBFS
- HD3 (-17.52 MHz), reduced to -100 dBFS
- IM3 product (7.64 MHz), reduced to -95.1 dBFS
- Two-tone SFDR, improved from 54.8 dB to 66.7 dB

IN

OUT

Comparison of Digital Corrections for TI-ADCs

	This work	M. Baert	S. Singh	Y. Qui	G. Taylor
		JSSC 2020 [4]	TCAS-I 2015 [5]	TCAS-I 2018 [11]	JSSC 2013 [12]
Architecture	Adaptive	LUT,	Adaptive	Adaptive	LUT,
	filter	tunable delays	filter	filter	replica ADC
External signal	No	CW	No	No	No
Mismatch correction for TI-ADC	Background	Offline	Background	Background	No
Nonlinearity correction	Background*	Offline	No	No	Background
Sampling freq. of (TI-)ADC, f_s [MHz]	3,680	5,000	2,900	32,000	1,300
Operating freq. [MHz]	57.5 (f_s/D)	625 (f_s/N)	f_s	f_s	$1,300~(f_s)$
Power consumption [mW] @ Supply [V]	4.3@1.0	2.7@0.9	N/A	N/A	<8.5@0.9
Verification method/chip	Simulated/Custom	Measured/Custom	Simulated [†] /N/A	Measured/FPGA	Measured/Custom

* Only for third-order nonlinearity. [†] Measured TI-ADC data was used.

- Proposed method:
 - Simultaneously corrects the channel mismatches and third-order nonlinearity of TI-ADCs in the background
 - Operates at lower clock rates (fs/D) than the other correction circuits

Summary

- Digital background correction:
 - Reduces the mismatch aliasing signals, HD3, and IM3 products of four-channel TI-ADCs with VCOs.
 - Utilizes the complex and decimated data, sent from a direct-RF receiver, and adaptive filters with CCF of these signals.
 - Designed with 24-bit floating point arithmetic and a 65-nm CMOS technology
 - Improves the two-tone SFDR of a TI-ADC with *fs*=3,680 MHz from 54.8 dB to 66.7 dB, operating at 4.3 mW and a rate of 57.5 MS/s on simulations.