First-Order Recursive CIC Filters in Time-Interleaved VCO-Based ADCs for Direct-RF Sampling Receivers

Yuma Isobe, Takao Kihara

Osaka Institute of Technology, Japan

November 12, 2019

Outline

Background and objectives Direct-RF sampling receiver Conventional methods to lower power consumption

Proposed direct-RF sampling receiver Time-interleaved VCO-based ADC First-order recursive CIC filter

Simulations

Output spectrum (SNR) Chip area and power consumption Performance comparison

Summary

Background

Direct-RF sampling receivers:

- Consist of N-channel TI-ADCs, I/Q mixers, CIC filters, and LPFs
- Provide flexibility in designing RF receivers
- Reduce the design cost and time to market

Digital building blocks:

- > Operate at gigasamples per second (GS/s) rates
- Consume a large amount of the total power

N: Number of channels, TI: Time-interleaved, ADC: Analog-to-digital converter, CIC: Cascaded integrator-comb, *D*: Decimation factor

Conventional Methods

- TI VCO-based ADCs achieve high-speed sampling and high resolution with lower power (TCAS-I '08, ISSCC '19)
- > $f_s = 4f_{in}$ greatly simplifies I/Q mixers (A-SSCC'11, JSSC '12)
- Polyphase CIC filters relax the speed requirements of the adders (TCAS-II '01, JSSC '12)

Conventional methods have not considered the digital circuits in TI-ADCs and not decreased the power consumption.

Objectives

- 1. Place first-order recursive CIC filters with $D_1 = 2$ after a TI VCO-based ADC:
- a TI VCO-Daseu ADC.
- Remove the differentiators in the ADC
- \succ Decrease the clock frequencies of the samplers by D_1
- Reduce the total power consumption of the receiver

2. Design and simulate a 3.6-GS/s receiver, directly sampling Sub-GHz (900 MHz) signals.

VCO-Based ADC and First-Order Recursive CIC Filter

> Consists of a sampler, phase detector, and differentiator $(1 - z^{-1})$

First-order recursive CIC filter ($D_1 = 2$):

➢ Consists of an integrator $(1/(1 - z^{-1}))$, decimator, and differentiator

The differentiator is canceled out by the integrator.
The decimator is moved to the sampler.

VCO-Based ADC with First-Order Recursive CIC Filter

Proposed VCO-based ADC has:

- > Sampler and differentiator operating at $f_s/(D_1N)$
- > Frequency response of the first-order CIC filter with D = 2

Fewer digital blocks and lower clock frequency reduce the total power consumption of the receiver.

Proposed Direct-RF Sampling Receiver

Consists of a 4-channel TI VCO-based ADC with 1st-order CIC filters (D₁ = 2) and 2nd- and 3rd-order CIC filters
Decreases the data rate of f_s to f_s/256

Simulations of Receiver with Proposed Method

- Tools: Mathworks MATLAB/Simulink, Candence NC-Verilog
- Perfomances: SNR, chip area, power consumption

Number of data: <i>N</i> _D	$2^{21}(=2097,152)$
Sampling frequency: f_s	1
Frequency of input signal: $f_{in} = f_s/4 + f_{BB}$	1/4 + 1/8192
Amplitude of input signal: A _{in}	0.20

Receiver without Proposed Method (Conv.)

- > Sampling rate for one ADC is $f_s/4$.
- > First-order recursive CIC filters with D = 2 are placed after a second-order polyphase decimation filter with D = 8.

We compare the perfomances of two receivers with and without the proposed method.

Output FFT Spectrum

- > Desired signal was downconverted to f_{BB} .
- SNR slightly degraded due to the quantization noise folded by decimation in the ADC and CIC filters.
- > Aliasing signal (due to mismatch among the ADCs) exsits at $-f_{BB}$
- > Third-order harmonic distortion (HD₃) exists at $-3 f_{BB}$

The proposed receiver operated successfully.

BW: Bandwidth, HD₃: Third-order harmonic distortion

Layout and Chip Area of Digital Blocks

Process: 65 nm CMOS technology
Tools: Synopsys Design/IC Compiler
Condition: (Worst) SS, 0.9-V supply, 125°C,

(Typ, power consumption only) TT, 1.0 V supply, 25°C

Proposed method	Clock rate (Max) [MS/s]	Power consumption [mW]	Chip area [mm ²]
w/	<mark>450</mark> , 900	<mark>3.6</mark> , 7.0	0.025
w/o	900	7.2	0.028

The proposed receiver consumes lower power and smaller area.

Performance Comparison of Receivers

	This work	Conv.	E. Martens <i>et al</i> .	R. Nanda <i>et al</i> .	C. Erdmann <i>et al</i> .
Blocks	ADC, Mixer, CIC		Mixer, CIC, HBF	Mixer, CIC, IP, GC, HBF	Mixer, NCO, Decimation, FIFO
CMOS technology [nm]	65		45	65	16 (FinFET)
Sampling rate of TI-ADC [MS/s]	3600,7200	3600	8880	2700	4423
Number of interleaved ADCs	4		6	1	8
Clock rate (Max) [MS/s]	<mark>450</mark> , 900	900	1480	2700	N/A
Supply voltage [V]	1.0		1.1	1.0	N/A
Power consumption [mW]	<mark>3.6</mark> , 7.0	7.2	14.3	14	<100
Chip area [mm ²]	0.025	0.028	0.06	0.4	<0.2
Measured	No		Yes	Yes	Yes

- Proposed receiver:
 - Has a half of the clock rate (450 MS/s) and lower power consumption (3.6 mW) compared to the conventional one
- Operates with the lowest power consumption

HBF: Half band filter, IP: Interpolation, GC: Gain control, NCO: Numerically controlled oscillator

Summary

- > We place first-order recursive CIC filters with D = 2 after TI VCO-Based ADCs in direct-RF sampling receivers.
- The CIC filters remove the differentiators in the VCO-based ADCs and halve the clock frequencies of the samplers.
- We design the digital blocks of a 3.6-GS/s direct-RF sampling receiver in a 65-nm CMOS process.
- Simulations show that the proposed circuit operates at a 450-MS/s rate and consumes 3.6 mW.
- The power consumption is half of the power of the conventional one.

Time-Interleaved ADC (TI-ADC)

4-channel TI-ADC:

≻Converts analog signals to digital ones with four ADCs.

> Decreases the required sampling rate for one ADC to $f_s/4$.

> The sampled signals are multiplexed together to generate a signal sampled at f_s

This multiplexer can be realized by the addition in the decimation filter

Differential VCO-based ADC

Adopts a differential topology

To remove even-order harmonics owing to the nonlinearity of the VCO, consisting of 32 differential delay cells
The samplers are clocked by a signal with f_s = 8 (poposed)
The phase detector consists of NAND gates and a fat tree encoder.

I/Q Mixer

>Downconverters the digitized signal to baseband with a complex signal, $exp(-j(2\pi f_s/4)t)$

Eliminate all mixers using 0 and realize I/Q mixing only with multiplications of 1 and -1

This greatly reduces the hardware cost.