Digital Correction of Mismatches in Time-Interleaved ADCs for Digital-RF Receivers

Tomoya Takahashi, Takao Kihara, Tsutomu Yoshimura

Osaka Institute of Technology, Japan

December 6, 2017

Outline

Background and Objectives

Mismatch Aliasing Signals Modeling of TI-ADC in Digital-RF Receivers

Correction Architecture Complex Mixer and CIC Filter Mismatch Correction Circuit

Simulations and Measurements

Summary

Background

Digital-RF Receivers:

≻Sample RF signals directly.

>Downconvert and filter the RF signals in digital domain.

≻Reduce the design cost and time to market.

LNA: Low-noise amplifier, ADC: Analog-to-digital converter, CIC: Cascaded integrator-comb, JSSC '12 [1]

Two requirements for the direct-RF sampling ADC →High-speed sampling (GS/s) →High SFDR in the desired band (>70 dB) SFDR: Spurious-free dynamic range

Objectives

Time-interleaved ADC (TI-ADC):

Converts analog signals to digital ones with multiple ADCs.Decreases the required sampling rate for one ADC.

Characteristic mismatches among ADCs:

Generate aliasing signals and degrade the SFDR.Must be corrected.

Conventional correction methods (MTT'15[3], TCASI'13[4]) :

≻Cannot be applied to digital-RF receivers.

➢Become more complex as number of channels increases.

We present a simpler correction method for M-channel TI-ADCs in the receiver.

Modeling of Two-channel TI-ADC

Output spectrum of each ADC
> Desired signal in ADC₀ is in-phase to it in ADC₁.
> Aliasing signals around ±ω₅/2 in ADC₀ are antiphase to those in ADC₁.

Multiplexing $\hat{x}_0(n)$ and $\hat{x}_1(n)$ - cannot completely remove aliasing signals due to mismatches.

5

Modeling of *M*-channel TI-ADC

4-channel TI-ADC ≻Aliasing signals appear around $±ω_s l/4$ (l = 1, 2, 3, ...).

M-channel TI-ADC

 ≻Aliasing signals appear around ±ω_sl/M (l = 1, 2, 3, ...).
 ≻As M increases, more aliasing

signals appear.

Correction circuits become more complex as *M* increases.

Modeling of TI-ADC in Digital-RF Receivers

Bandwidth of the RF input signal: $\ll \omega_s$

Conditions

Bandwidth of input signal:
 < ω_s/M
 Carrier frequency: ω_s/4

Need to remove only one aliasing signal.

Correction Architecture

Complex mixer and CIC filter:

Enable the correction block to operate at lower data rates.Remove out-of-band aliasing signals.

Simple mismatch correction block:

>Uses complex conjugate of the CIC filter output signal. >Percoves an in-band aliasing signal

Removes an in-band aliasing signal.

Complex Mixer and CIC Filter

Complex Mixer:

>Multiplies $\hat{x}(n)$ by $\exp(-j\omega_s t/4)$ to downconvert the input signal to the baseband.

CIC filter:

≻Extracts the in-band components.

$$H_{CIC}(z) = \left(\frac{1}{D} \cdot \frac{1 - z^{-D}}{1 - z^{-1}}\right)^{L}$$

D: Number of decimation
L: Order of the filter

Removes the aliasing signals around $\pm \omega_s l/M$ by setting *D* to *M*.

The decimated signal has only in-band components.

Mismatch Correction

Correction signal, $\alpha(n)\hat{x}_{CIC}^*(n)$ > Multiplying complex conjugate of $\hat{x}_{CIC}(n)$ by $\alpha(n)$.

Correction coefficient, $\alpha(n)$

Generated by mismatch estimation block.

Corrected signal, y(n)

Subtracting the correction signal from $\hat{x}_{CIC}(n)$. $y(n) = \hat{x}_{CIC}(n) - \alpha(n)\hat{x}^*_{CIC}(n)$

Mismatch Estimation

Detects the complex conjugate of y(n) with CACF

≻No mismatches: $C_y(0) = E[y^2(n)] = E[y(n)(y^*(n))^*] = 0$

CACF: Complementary auto-correlation function, E[]: Expected value

Adaptive signal processing:

Allows $C_y(0)$ to be zero to remove the aliasing signals. $\alpha(n+1) = \alpha(n) + \mu y^2(n)$ μ : Adaptive step size

Simulated Spectra

Simulations of a 4-channel 12-bit TI-ADC

A -50 dBFS aliasing signal was reduced to the noise floor.

Measurement Setup

A commercial 2-channel 12-bit TI-ADC was used.
 The frequencies of the sampling clock and input signal were 1.2 GHz and 305 MHz.

The digital output signal was acquired with a logic analyzer and corrected by using an FPGA.

Measured Spectra

A -40 dBFS aliasing signal was reduced to the noise floor.

Comparison

	Number of ADC channels	Bandwidth	Number of adders	Number of multipliers	FIR filters
This work	М	$\pm \omega_s/2M$	7	7	No
MTT'15 [3]	2	$\pm \omega_s/2$	6 or 8	7	HTF
TCAS-I'15 [6]	4	$\pm \omega_s/2$	27	21	HTF, LPF, HPF
TCAS-I'13 [4]	М	$\pm \omega_s/2$	2M - 1	4(M - 1)	Derivative filter

HTF: Hilbert transform filter, LPF: Low-pass filter, HPF: High-pass filter

The proposed method needs

- > The minimum number of adders and multipliers $(M \ge 4)$
- No FIR filters

Summary

Presented a mismatch correction method employing the downconverted and decimated signals:

- >Enables the correction block to operate at lower data rates
- ➢Removes out-of-band aliasing signals

The aliasing signals are reduced on:

- Simulations of a 4-channel 12-bit TI-ADC
- ≻Measurements of a 2-channel 12-bit TI-ADC

The proposed method can be implemented more simply and completely remove the aliasing signals.

FPGA

Logic resources	Used	Total	Percentage used
ALM	103	18480	0.6 %
DSP block	10	66	15.2 %

This table summarizes the logic resources of the proposed mismatch correction circuit on the FPGA.

Convergence behaver of coefficient α

